42 research outputs found

    Slotted Printed Monopole UWB Antennas with Tuneable Rejection Bands for WLAN/WiMAX and X-Band Coexistence

    Get PDF
    YesFour versions of the compact hexagonal-shaped monopole printed antennas for UWB applications are presented. The first proposed antenna has an impedance bandwidth of 127.48 % (3.1 GHz to 14 GHz), which satisfies the bandwidth for ultra-wideband communication systems. To reduce the foreseen co-channel interference with WLAN (5.2GHz) and X-Band systems (10GHz), the second and third antennas type were generated by embedding hexagonal slot on the top of the radiating patch. The integration of the half and full hexagonal slots created notched bands that potentially filtered out the sources of interference, but were static in nature. Therefore, a fourth antenna type with tuneable-notched bands was designed by adding a varactor diode at an appropriate location within the slot. The fourth antenna type is a dual-notch that was electronically and simultaneously tuned from 3.2GHz to 5.1GHz and from 7.25GHz up to 9.9GHz by varying the bias voltages across the varactor. The prototypes of the four antenna versions were successfully fabricated and tested. The measured results have good agreement with the simulated results.This work is carried out under the grant of the Fundacão para a Ciência e a Tecnologia (FCT - Portugal), with the reference number: SFRH / BPD / 95110 / 201

    Compact Microstrip Antenna Design for Microwave Imaging

    Get PDF
    YesAn ultra-wideband microstrip antenna design is considered with respect to applications in breast cancer detection. The underlying design concept is based on ground penetrating radar (GPR). Simulated and measured prototype performance show excellent performance in the input impedance and radiation pattern over the target range from 4 GHz to 8 GHz. The 4 GHz to 8GHz frequency band for microwave imaging perform better in comparison with other microwave frequencies. The antenna also shows a reasonable uniform radiation performance in the broadside direction which contributes to the reduction of clutter levels, thus aiding the reconstruction quality of the final image

    A Capacitively loaded Antenna for use in Mobile Handsets

    Get PDF
    YesA tuneable slotted patch antenna design is presented and verified for use in the DCS, PCS and UMTS bands. The tuning circuit consists of two varactor diodes with some passive components, and is integrated fully with the r radiator patch, with the varactors occupying different locations over the slot. The tuning does not require any further modification to the patch or feed geometry. Good agreement is observed between the predicted and observed impedance bandwidth, return loss, gain and radiation pattern, throughout the range 1.70 GHz-2.05 GHz

    Secure Mutual Self-Authenticable Mechanism for Wearable Devices

    Get PDF
    YesDue to the limited communication range of wearable devices, there is the need for wearable devices to communicate amongst themselves, supporting devices and the internet or to the internet. Most wearable devices are not internet enabled and most often need an internet enabled broker device or intermediate device in order to reach the internet. For a secure end to end communication between these devices security measures like authentication must be put in place in other to prevent unauthorised access to information given the sensitivity of the information collected and transmitted. Therefore, there are other existing authentication solutions for wearable devices but these solutions actively involve from time to time the user of the device which is prone to a lot of challenges. As a solution to these challenges, this paper proposes a secure point-to-point Self-authentication mechanism that involves device to device interaction. This work exploits existing standards and framework like NFC, PPP, EAP etc. in other to achieve a device compatible secure authentication protocol amongst wearable device and supporting devices.

    Design of a Planar Inverted F-L Antenna (PIFLA) for Lower-band UWB Applications

    Get PDF
    YesThis paper examines the case for an ultrawideband planar inverted-F-L-antenna design intended for use in the lower sub-band. The antenna construction is based on the conventional inverted F, and inverted L as its feed element, and parasitic element, respectively. The optimized antenna size is 30×15×4mm3. The prototype antenna has a good return loss of -10 dB, and a 66.6% impedance bandwidth (2.8 GHz ¿ 5.6 GHz), the gain varies between 3.1 dBi and 4.5 dBi
    corecore